

1000 Atmospheric Carbon Dioxide

Arctic Sea Ice: Sept 1980 vs Sept 2007

University of Illinois - The Cryosphere Today http://arctic.atmos.uiuc.edu/cryosphere/ NSIDC Sea Ice Animation 1979-2008 http://nsidc.org/sotc/sea_ice_animation.html

Northeast Winter Temperature Trends 1965-2005

Burakowski et al., 2008, JGR

Trends in One Inch Precipitation Events 1948-2007

Winter/Spring (1 Jan - 31 May) Center-of-Volume Dates

All data from unregulated rivers; Hodgkins et al., 2003

Northeast Climate Impacts Assessment

Collaboration among Union of Concerned Scientists and 50 independent scientists

Climate Cha in the U.S. I OUR CHOICES, OUR LEGACY

for up of more records doors that if gh the Newbarn site report from two series in more of the content. If the number of even danger with to sportbastdy studies. So not worklow do conceptions to that so not doop the conceptions to that so

Reducing Heat-Tra

had reasoning is under one and panel to have a soland and panel to have a solnaming in these is the solar reasoning of the solar solar and the base theory of these integres and the base theory of these integres and the pack effects the have no is upon the pack effects the have no is upon the pack effects the have no is upon the pack effects of the have no is upon the pack effects of the have no is upon the pack effects of the have no is upon the pack effects of the have no is upon the pack effects of the have no is upon the pack effects of the have no is upon the pack effects of the have no is upon the have no is u

While series to taken standing the the backward series of the result plot taken of the series of the result plot taken of the series of the series taken of the series represents for many series of the series represents for the series of the series of the series the series of the seri

au 14 44

and y safes

ent. Car

Maine

cont towering Moure Katalohi to the sould benchme of Web, the climate of Moure in charging frequency manual growing factors and waters are be charger as an intervention of the second manager are another with plant memory and manager are another with plant memory and manager are another with plant memory and plant memory and plant memory and manager are another with plant memory manager and the second memory and memory ungent plant memory and and the second memory and memory and the second of the second method memory and character of the second method memory and the second method memory and method memory and the second method memory and method memory and the second method method memory and method memory and the second method method memory and method memory and the second method me

statel accessing and chapters. If the tate of emission is lowered, however, projections view that vary of the charges will be the inte listenate. Development charges will be the interlistenate charges indexes and periodhigh determine the dense our chatters and period-billion when a determine the charge the camegerings listen when, and page the camegerings list when and append the second sectors for their ecourty, ensurement, and matike of the

The research summarized term describes have dream change may affect Mare and other battheast states under two different enumers con-

the second states of the secon

The exacts also explores actions that individual boaslides, functions, and governindex functions are set take to day to induce interview to leave contaction with staping before the leave-articulars convers, and to adapt to the

Confronting Climate Change in the U.S. Northeast

SCIENCE, IMPACTS, AND SOLUTIONS

JULY 2007

www.climatechoices.org

Climate Change in the Casco Bay Watershed: Past, Present, and Future

CAMERON WAKE AND ELIZABETH BURAKOWSKI

Carbon Solutions New England Institute for the Study of Earth, Oceans and Space, University of New Hampshire, Durham, NH

KATHARINE HAYHOE

ATMOS Research & Consulting, Lubbock, TX Dept. of Geosciences, Texas Tech University

CHRIS WATSON AND ELLEN DOUGLAS

Environmental, Earth and Ocean Science Department, University of Massachusetts, Boston, MA

JEFF VANDORN, VAISHALI NAIK, CLARE KEATING ATMOS Research & Consulting

mate Station atershed Boundary

ton

Portland Mean Annual Temperature: 1891-2006

Portland Winter Temperature: 1891-2006

Portland Annual Precipitation: 1891-2006

Climate Trends 1965-2006: Portland, Lewiston, Farmington (Bold trends are statistically significant at p<0.01; <u>underlined</u> trends significant at p<0.05)

PORTLAND, ME	Winter	Spring	Summer	Fall	Annual
Precipitation (in/decade)	<u>-0.95</u>	+0.56	+0.13	+0.66	+0.34
Maximum Temp (°F/decade)	<u>+0.71</u>	+0.24	-0.05	+0.32	<u>+0.31</u>
Mean Temp (°F/decade)	+0.93	+0.33	-0.07	+0.26	+0.38
Minimum Temp (°F/decade)	+1.16	+0.43	-0.10	+0.02	+0.39
LEWISTON, ME					
Precipitation (in/decade)	<u>-1.03</u>	+0.26	-0.25	+0.50	-0.87
Maximum Temp (°F/decade)	+0.46	+0.24	+0.17	+0.24	+0.29
Mean Temp (°F/decade)	+0.54	+0.29	<u>+0.34</u>	+0.30	+0.39
Minimum Temp (°F/decade)	+0.65	+0.34	+0.52	<u>+0.35</u>	+0.48
FARMINGTON, ME					
Precipitation (in/decade)	-0.65	+0.74	0.0	+0.72	+0.77
Maximum Temp (°F/decade)	+0.81	<u>+0.60</u>	+0.15	+0.40	+0.51
Mean Temp (°F/decade)	+1.23	+0.74	<u>+0.42</u>	+0.56	+0.76
Minimum Temp (°F/decade)	+1.65	+0.88	+0.70	+0.70	+1.00

Extreme Precipitation Events - Portland

Ice Out Dates – Sebago Lake

Portland Covered Days: 1965-2006

Portland Snowfall: 1965-2006

Relative Sea Level Rise – Portland

Greenhouse Gas Emission Scenarios

Projecting Future Climate Change for the Northeast: Downscale Global Projections to Regional Level

Rising Annual Temperatures

More Hot Days

Fewer Cold Days

Increase in Precipitation in Winter & Spring Decrease in Summer

Snow Cover Days

More Extreme Precipitation Events

More Precipitation During Wettest Day of the Year (higher emissions scenario)

Increase in Drought Conditions (20% below average ppt)

Change in Elevation of 100 Year Floods

Table 8 Preliminary Estimates of Future Stillwater Elevations at the Portland Tide Gauge Under Lower and Higher Emissions Scenarios (feet relative to NAVD ¹)							
Scenario	Lower		Higher				
Year	2050	2100	2050	2100			
FEMA 1998 Stillwater Elevation	8.9	8.9	8.9	8.9			
Subsidence	0.024	0.043	0.024	0.043			
Dynamic	NE	0.52	NE	0.79			
Eustatic	0.66	1.6	1.4	4.6			
Total Stillwater Elevation ² (ft)	9.5	11.1	10.3	14.3			
1 - NAVD: North American Vertical Datum of 1988 2 – Total Stillwater Elevation may not equal total of components due to rounding							

NE - not estimated

Stillwater: The maximum coastal storm-induced water-surface elevation, primarily a combination of the normal astronomic tide and a storm surge

100 Year Storm Flooding in Portland Harbor in 2100 Under High Emissions Scenario (5.4 ft SLR)

100 Year Storm Flooding in Portland Harbor in 2100 Under High Emissions Scenario (5.4 ft SLR)

